Preliminary communication

Cationic cyclic carbene or carbon-bonded ylide complexes of iridium(III) and platinum(II)

P.J. FRASER, W.R. ROPER* and F.G.A. STONE

Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received January 1st, 1973)

SUMMARY

C54

2-Chloro-4-methylthiazole, 2-chlorobenzoxazole and 2-chlorobenzthiazole oxidatively add to both $[IrCl(CO)(PMe_2Ph)_2]$ and $[Pt(PhCH=CHPh)(PEt_3)_2]$; protonation of the products at nitrogen produces cationic carbene complexes.

Molecules like thiazole, benzthiazole and benzimidazole normally coordinate to metal ions through a nitrogen atom, but for imidazole and benzimidazole attachment through carbon to ruthenium has recently been demonstrated¹, and benzthiazole "carbene" complexes have been derived from reactions involving the electron-rich olefin 1,1 'dimethyl-2,2'-bibenzothiazolinylidene^{2,3}. We report herein a simple route to carbon-bonded metal complexes of these ligands through oxidative-addition of the 2-halo-derivatives to sufficiently reactive d^8 or d^{10} complexes followed by protonation at nitrogen. The ability of transition metal complexes containing the M— C=NR group to be readily protonated has been used previously as a route to cationic carbene⁴ or carbon bonded ylide⁵ complexes.

The complex $[IrCl_{(CO)}(PMe_2 Ph)_2]^6$ reacts slowly (12h, 60° in benzene) with 2chloro-4-methylthiazole, 2-chlorobenzoxazole and 2-chlorobenzthiazole to form neutral iridium(III) complexes $[IrCl_2(CO) \{\overline{C=NCH=C(Me)S}\}(PMe_2 Ph)_2]$, $[IrCl_2(CO)(\overline{C=NC_6H_4O})(PMe_2 Ph)_2]$ and $[IrCl_2(CO)(\overline{C=NC_6H_4S})(PMe_2 Ph)_2]$, respectively. Treatment with perchloric or tetrafluoroboric acids protonates the nitrogen atoms in these complexes (see Table 1) e.g.:

* On study leave from the University of Auckland, New Zealand.

TABLE 1

INFRARED DATA FOR REPRESENTATIVE IRIDIUM(III) AND PLATINUM(II) COMPLEXES

Compound ^{a,b}	$\nu(CO)(cm^{-1})$	v(NH) (cm ⁻¹)
IrCl, (CO)(C=NC, H, O)(PMe, Ph),	2071	
$IrCl_1(CO)(C=NC_6H_4S)(PMe_2Ph)_2$	2069	
[IrCl. (CO)(CNHC, H, O)(PMe, Ph),]*	2085	3280, 3240
[IrCl. (CO)(CNHC, H, S)(PMe, Ph),]*	2071	3200
[IrCl, (CO) { CNHCHC(Me)S } (PMe, Ph),]*	2078	3240, 3200
[PtCI {CNHCHC(Me)S }(PEt_3)2]*	-	3205, 3173, 3108

^a All complexes are colourless. ^b Measured as Nujol mulls.

These protonations are reversible and base converts the cations to the neutral iridium(III) complexes. Similarly a reversible hydrohalogenation has been established for the Pt^{II} complex PtI(CPh=NMe)(PPh₃)₂⁵.

The ligands in these cyclic Ir^{III} carbene complexes, like dimethylimidazolidene in $Fe(CO)_4 [CN(Me)C_2H_2N(Me)]^7$ and the substituted pyran-2-ylidene complexes of chromium and molybdenum⁸, may be regarded as aromatic systems⁹. The cations are very inert to further substitution. Thus prolonged reaction of $[IrCl_2(CO) \{CNHCHC(Me)S\} (PMe_2Ph)_2]BF_4$ with excess of iodide ion results only in anion exchange and recovery of the salt $[IrCl_2(CO) \{CNHCHC(Me)S\} (PMe_2Ph)_2]I$.

The corresponding alkylated carbene complexes are obtained through direct oxidative-addition of the alkylated ligand, e.g. [ClCN(Me)CH=C(Me)S] BF4 yields [IrCl₂(CO) {CN(Me)CHC(Me)S}(PMe₂Ph)₂]BF4. Direct alkylation of the neutral iridium(III) compounds by trialkyl-oxonium salts has not been successful, probably for steric reasons.

Among d^{10} complexes, [Pt(PhCH=CHPh)(PEt₃)₂] ¹⁰ reacts rapidly with 2-chloro-4methylthiazole and protonation affords the cationic carbene complex [PtCl{CNHCHC(Mé)S](PEt₃)₂] BF₄.

All the new compounds have been characterised by IR and NMR spectroscopy, and by elemental analyses.

We thank the Science Research Council for support.

REFERENCES

- 1 R.J. Sundberg, R.E. Shepherd and H. Taube, J. Amer. Chem. Soc., 94 (1972) 6558.
 - 2 D.J. Cardin, B. Cetinkaya and M.F. Lappert, Chem. Rev., 72 (1972) 545.
 - 3 D.J. Cardin, B. Cetinkaya, E. Cetinkaya and M.F. Lappert, J. Organometal. Chem., 44 (1972) C59
 - 4 M.F. Lappert and A.J. Oliver, Chem. Commun., (1972) 274.
 - 5 P.M. Treichel, J.J. Benedict, R.W. Hess and J.P. Spenson, Chem. Commun., (1970) 1627
 - 6 A.J. Deeming and B.L. Shaw, J. Chem. Soc. (A), (1968) 1887
 - 7 K. Ofele, Angew. Chem. Internat. Edn., 7 (1968) 950
 - 8 C.W. Rees and E. von Angerer, Chem. Commun., (1972) 420
 - 9 H.W. Wanzlick, Angew. Chem. Internat. Edn., 1 (1962) 75.
 - 10 J. Spencer, M. Green and F.G.A. Stone, unpublished.